


Reverse engineering

* Work out what programs do, and how
* Many applications
- Debugging is sort of “reverse-engineering” a bug
- Analysing code flow to find “features” (Technical Minecraft)

- Finding ways of disabling malware

- Extracting the exploit used by worm to patch it

* Very attractive skill to employers

—



Binary Patching / Cracking

* Modifying a program without the source code

* Many uses

- Extract useful parts without rewriting from scratch
- Fix bugs on unmaintained software

- Add features to software (i.e. modding games)

- Can be used in software piracy

* Be careful with terminology
- Cracking often means DRM bypass for piracy

- "Binary patching” is the more employable term




DANGER WARNING PLEASE NO BREAK LAW!!

* DON'T crack DRM-infested programs

- Digital Rights Management
- Bypassing DRM (even without sharing): illegal in the US, definitely dodgy in UK
- Sharing cracked programs: violates copyright law everywhere
* MAYBE examine legit programs you have rights to use
- Potential copyright issues if you write something that competes with owner (programs, manuals, etc)
- Gives you useful practice

- Useful insight into a PREVIOUSLY KNOWN co-operative and appreciative target

* I've been in this situation before
* DO examine your own programs
- Can teach you a lot about optimisation and low-level code

- Teaches you what certain assembly blocks mean



* Easy to recover plaintext data

- Grep for flags!

* You can use strings to get strings from a binary
- @Grep through the result, or just manually search

* Anything that can display text works

- I have seen this solved with notepad

—



Strings demo

* [strings trivial]




Memory dump

* Don't always just store flag in plaintext
* Reverse engineering and patching is hard

* Grepping for flags is easy

- Set a breakpoint where the flag is stored in plaintext

- Search for the flag, or print it if you know where it is

—



Memory dump demo

* [cutter demo]
* [gdb demo]

- ‘search-pattern” with gef

- ‘dump memory with base gdb

—



Reverse engineering

* Sometimes it's a bit more complicated

- Data not stored in plaintext

- You want an entire function, not just some data
* For flags/keys

- It must check the data somehow

- The secret is in the code

—



Reverse engineering rules

* Rule 1: If you don’t understand it, it's probably not important
- No-one cares what FYL2XP1 does
- What the hell even is PHMINPOSUM?
- Just look at jumps, calls and movs
* Rule 2: Avoid looking at assembly whenever possible
- Assembly is a Lovecraftian aberration that slowly drives all who lay eyes upon it to insanity
- Use decompilation where possible
- Look at control flow graphs

* Rule 3: focus on the important parts

Modern software has tens of thousands of functions

Most of them are never used

Most of the rest do things you don't care about

Only examine functions you directly need to understand

ﬁ



Reverse engineering tools

* Real programmers use objdump -d

- Works for really small software that human brains can comprehend

- Good luck with multi-million instruction binaries

* Some people use Ghidra/IDA pro/binary ninja

I find Cutter the most useful

- Supports decompilation

- Supports binary patching

- Experimental support for debugging (a bit rubbish)
- A bit dodgy and crashes occasionally

- Looks cool

—



Reverse engineering demo

* [cutter ez]




Binary patching - extracting information

+ Find the thing you want
* Find the things before it stopping you

* Disable them

- NOP: replace the instruction with no-ops
- Reverse jump: invert the condition

- Conditional = unconditional jumps: don't check the condition

ﬁ



Binary patching - demo

* [demo - print flag]

* [ez - say win]




Advanced binary patching

* Sometimes you don’t have everything
- Program only loads flag in chunks

* If the program checks character by character, you can
easily brute force

- Theoretically timing attacks work (but take ages!)

- Patching is easier!

* Standard approach: get the program to exit with the index
of first incorrect character




Advanced binary patching - demo

* [cutter ez]




Reversing checkers

* In general you can’t work out what input a program accepts

- Literally a restatement of the halting problem

For easy things, we can do it by hand

For harder things, we use software (usually Z3)

Z3 can be controlled by most languages, but generally
people use Python

Won't give full docs of Z3 here (google it!)

—



Reversing checkers - demo

* [cutter harder]

* [nano harder-hax.py]

* [python3 harder-hax.py]




PLEASE DO CTF
CHALLENGES :(((

19



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

